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OUTLINE

I Role of the Neutrino Probe

✦ The Ideal Case: Scattering off Free Nucleon;

✦ The Real Case: Existing Data.

II Understanding (Anti)-Neutrino Deep Inelastic Scattering

✦ The Axial-Vector Current;

✦ High Twist Contributions to Structure Functions;

✦ Nuclear Effects.

III Determination of Strange Sea Distributions

✦ (Anti)-Neutrino Induced Charm Dimuon Production;

✦ Extraction of the Strange Sea Parameters;

✦ The NOMAD measurements.

IV Future measurements

✦ The MINERνA Experiment;

✦ The LBNE Project.
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THE NEUTRINO PROBE (IDEAL CASE)
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✦ BOTH ν AND ν̄ DIS off FREE nucleon ideal probe of nucleon structure:

● Isospin relations F ν̄,p
2 (x,Q2) = F ν,n

2 (x,Q2) (Adler sum rule);

● σνN + σν̄N ≃ F2 ∼ 2
∑

(xq + xq̄); σνN − σν̄N ≃ xF3 ∼ 2
∑

(xq − xq̄)

● Small radiative corrections.

✦ Complete flavor separation in Charged Current interactions (d/u, s/s̄, d̄/ū)

✦ Separation of valence (xF3) and sea (F2) distributions

=⇒ We want to measure differential cross-sections and/or structure functions off p,D
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THE NEUTRINO PROBE (REAL CASE)

✦ Potential of the ν(ν̄) probe still limited by experimental factors:

● BEAM TECHNOLOGY : beam intensity and knowledge of fluxes;

● DETECTOR RESOLUTION : event reconstruction and energy scales.

✦ Existing measurements of d2σ/dxdy and structure functions use NUCLEAR targets
and are significantly affected by systematics on Eµ, EH energy scales and flux

Experiment Mass νµ CC Stat. Target Eν (GeV) ∆Eµ ∆EH

CDHS 750 t 107 p,Fe 20-200 2.0% 2.5%
BEBC various 5.7×104 p,D,Ne 10-200
CCFR 690 t 1.0×106 Fe 30-360 1.0% 1.0%
NuTeV 690 t 1.3×106 Fe 30-360 0.7% 0.43%
CHORUS 100 t 3.6×106 Pb 10-200 2.5% 5.0%
NOMAD 2.7 t 1.3×106 C 5-200 0.2% 0.5%

18 t 1.2×107 Fe 5-200 0.2% 0.5%
MINOS ND 980 t 3.6×106 Fe 3-50 2-4% 5.6%

=⇒ Next generation experiments need high resolution detectors and ≥ 107 CC events
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RECENT MEASUREMENTS OF d2σ/dxdy

E=35GeV
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∆Eµ = 2.5%, ∆EH = 5.0%
Selected νµ(ν̄µ)CC: 870k (146k)
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NuTeV (Fe) PRD 74 (2006) 012008.

∆Eµ = 0.7%, ∆EH = 0.42%
Selected νµ(ν̄µ)CC: 860k (240k)
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✦ (Anti)-Neutrino Charged Current (CC)
DIS complementary to charged lepton
(NC) DIS and Drell-Yan processes

=⇒ Fixed target kinematics

✦ Need to address several model uncertain-
ties in order to benefit from the addition
of ν(ν̄) CC data in global QCD fits:

● Role of the Axial-Vector current;
● High Twist corrections;
● Nuclear effects.

=⇒ Higher complexity with respect to
charged lepton scattering off p,D
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PECULIARITY OF THE WEAK CURRENT

✦ Neutrino scattering is characterized by the

AXIAL-VECTOR CURRENT (V-A):

V V,AA =⇒ F1,2 (or FL, FT )

V A =⇒ F3

✦ Conservation of Vector Current (CVC), in
analogy to the charged leptons, implies:

F2, FT ∼ Q2 FL ∼ Q4 for Q2 → 0

✦ Axial Current is only Partially Conserved
(PCAC) and dominates FL at low Q2:

∂A = fπm2
πϕ =⇒ FL =

f2
πσπ

π
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✦ Transition scale between low and high Q2 is NOT m2
π but rather MPCAC ∼ 1 GeV 2,

since direct pion contribution ∂µϕ cancels out. Non vanishing constribution to F2:

F2 = (FL + FT )/(1 + 4x2M2/Q2) → (f2
πσπ)/π Q2 → 0

=⇒ CCFR determination on Fe target 0.210±0.02 (CCFR Coll., PRL 86 (2001) 5430).
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✦ The finite PCAC contribution to FL

strongly affects the asymptotic behaviour

of R = σL/σT for Q2 → 0:

FT ∼ Q2

FL ∼ f2
πσπ

π
> 0

so that R is divergent for vanishing Q2

=⇒ Substantial difference with respect to
charged lepton scattering.
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S. Kulagin and R.P., PRD 76 (2007) 094023
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HIGH TWIST CONTRIBUTIONS

FT,2,3(x, Q2) = F τ2
T,2,3(x, Q2) +

Hτ4
T,2,3

Q2
+ ..... (OPE)

✦ High Twists (HT) non-perturbative terms τ = 4, 6, ... reflecting the strength of the
multi-parton correlations (qq and qg) and suppressed by powers of 1/Q2

=⇒ Important at low and moderate Q2 (< 10 GeV2) where most ν(ν̄) data

✦ Kinematical High Twists associated with finite mass of target nucleon relevant at large
x2M2/Q2 values. Corrections usually incorporated into the leading twist (LT) term
(τ = 2) following Georgi and Politzer (1976):

F LT
T,2,3(x, Q2) → F LT,TMC

T,2,3 (x, Q2)

where the calculation involves the Nachtman variable ξ = 2x/(1 +
√

1 + 4M2x2/Q2).

Difficulty for x → 1 due to wrong threshold behaviour (F LT
i (ξ, Q2) > 0).

✦ Dynamical High Twists (τ > 2) related to multi-parton correlations can be determined
phenomenologically from data by exploiting their specific Q2 dependence.
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✦ No evidence for sizeable twist-6 terms
from global fit to e, µ DIS and DY data
(upper limit ∼ 0.02 well below twist-4)

✦ HT similar in FT and F2 indicate HT con-
tributions to FL very small

✦ HT on F2 and FT from CHORUS
ν(ν̄) cross-section data consistent with
charged leptons after charge rescaling.

✦ Simultaneous extraction of HT in xF3

from neutrino data

S. Alekhin, S. Kulagin and R.P.,
arXiv:0710.0124 [hep-ph],

arXiv:0810.4893 [hep-ph]
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EFFECTIVE LEADING ORDER APPROACH

✦ Use Leading Order GRV98 PDFs and
introduce scaling variable ξw and
empirical K-factors to account for High
Twists, missing high order QCD, etc.

x → ξw =
Q2+M2

f +B

Mν
[

1+
√

1+Q2/ν2

]

+A

f(x,Q2) → Kf × f(ξw, Q2)

(A. Bodek and U. Yang,

arXiv hep-ex/0308007; 1011.6592 [hep-ph] )

✦ For ν(ν̄) interactions use separate
Vector and Axial K-factors

● Vector Kf same as for e, µ data;
● Axial Kf constrained by Adler sum rule.

✦ Results show significant contributions
from effective HT

=⇒ See talk by U. Yang in parallel session
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NUCLEAR EFFECTS
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ZPC 36 (1987) 337;
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✦ Nuclear corrections are crucial in order to use ν(ν̄) data in global QCD fits since
virtually all existing data on heavy targets

=⇒ Significant uncertainties on nuclear corrections in ν(ν̄) interactions

✦ Only DIRECT measurement of nuclear effects in ν(ν̄) SFs from ratio 20Ne/D in BEBC
● Consistent with shadowing at small xBj but large uncertainties;

● Consistent with the EMC effect measured from e, µ DIS.

✦ Differences with respect to e, µ DIS expected due to the axial-vector current and to
the flavor selection
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CTEQ FITS TO ν(ν̄) DATA
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✦ Within the CTEQ analysis introduce nuclear PDFs as modifications of nucleon PDFs:

xf(x, Q0) = f(x, c0, c1, .....cn); ck → ck(A)

(I. Schienbein at al., PRD 80 (2009) 094004; PRL 106 (2011) 122301).

✦ Perform separate global fits to ν(ν̄) DIS data and e, µ DIS + Drell-Yan nuclear data

✦ Results show CHORUS+NuTeV ν(ν̄) data not consistent with e, µ DIS:
● No shadowing observed at small xBj;

● Different EMC slope.

=⇒ See talk by K. Kovarik in parallel session
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KP PREDICTIONS FOR CHORUS AND NuTeV
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✦ Detailed phenomenological model including Fermi motion and binding energy, off-shell
effect of bound nucleons, nuclear pion excess and shadowing correction
(S. Kulagin and R.P., NPA 765 (2006) 126; PRD 76 (2007) 094023, PRC 82 (2010) 054614).

✦ Comparison with NuTeV (Fe) and CHORUS (Pb) cross-section data (band ±2.5%):
● Systematic excess observed for x > 0.5 in both ν and ν̄ NuTeV data on Fe

● CHORUS data on Pb target consistent with predictions at large x;

● Discrepancy between NuTeV and old CCFR data at large x on Fe target.
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# of points χ2/dof
Cut Neutrino Antineutrino Neutrino Antineutrino

NuTeV (Fe)

No cut 1423 1195 1.36 1.10
x > 0.015 1324 1100 1.15 1.08
x < 0.55 738 671 1.16 1.02
0.015 < x < 0.55 686 620 0.97 1.01

CHORUS (Pb)

No cut 607 607 0.68 0.84
x > 0.02 550 546 0.55 0.83
x < 0.55 506 507 0.74 0.83
0.02 < x < 0.55 449 447 0.60 0.83

Fully independent model predictions, NOT FIT

✦ Good agreement of predictions with the CHORUS differential cross-sections on Pb in
the whole kinematic range

✦ Good agreement of predictions with the NuTeV differential cross-sections on Fe in the
main kinematic region 0.015 < x < 0.55

=⇒ See talk by S. Kulagin in parallel session
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RESULTS BY EPS
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Experiment χ2/dof
CTEQ6.6 CTEQ×EPS09

NuTeV 1.51 1.05
CHORUS 1.15 0.79
CDHSW 1.10 0.71

✦ Use nuclear corrections to PDFs from EPS09 fit to nuclear e, µ DIS and Drell-Yan
(K. Eskola, H. Paukkunen and C. Salgado, JHEP 0904 (2009) 065; JHEP 1007 (2010) 032).

✦ Analysis of CHORUS, NuTeV and CDHSW ν(ν̄) differential cross-sections and
comparison with calculations based upon CTEQ6.6 + EPS09

✦ Results indicate CHORUS and CDHSW data are in agreement with calculations, but
in disagreement with NuTeV data

=⇒ Anomalous Eν-dependent fluctuations in NuTeV data
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NEW MEASUREMENT FROM NOMAD

✦ High resolution spectrometer with low density
tracking, ρ ∼ 0.1g/cm3 and B = 0.4 T

● Momentum calibration from K0
S mass constraint;

● ∆Eµ = 0.2%, ∆EH = 0.5%.

✦ Measurement of d2σ/dxdy cross-section on Carbon
in the energy range 5 < Eν < 200 GeV

=⇒ First measurement on C target

✦ Absolute cross-section normalization to the world
average value on isoscalar target:

σν/Eν = 0.677 ± 0.014 × 10−38 cm2

GeV

in the energy range 40 < Eν < 80 GeV.

✦ Independent cross-check of NuTeV and CHORUS
measurements

=⇒ Preliminary results on C
do not show the NuTeV excess at large xBj
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A DIRECT PROBE OF STRANGE SEA
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✦ Charm dimuon production in ν(ν̄) DIS

d2σµµ

dxdydz
=

d2σc

dxdy
Dc(z)Bµ; z =

PL(hc)

P max
L

Bµ =
∑

h

fhBr(h → µ+X); h = D0, D+, D+
s , Λ+

c

Dc(z) average fragmentation function

✦ Charm production in ν and ν̄ DIS provides a clean and direct access to s(x) and s̄(x)

F2,c(x, Q) = 2ξ

[

|Vcs|2s(ξ, µ) + |Vcd|2
u(ξ, µ) + d(ξ, µ)

2

]

ξ = x
(

1 + m2
c/Q

2
)

, µ =
√

Q2 + m2
c

where simple LO approximations are given for illustration purpose
{

ν : s/(dv + ds) → c ≃ 50%
ν̄ : s̄/d̄s → c̄ ≃ 90%
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Exp. Publ. Stat. (Nµµ) Eν (GeV)

Charm dimuons in νN

CDHS 1982 9922 30 − 250 (20)
CHARM II 1999 3100 35 − 300 (24)

NuTeV 2001 5102 20 − 400 (157.8)
CCFR 2001 5030 30 − 400 (150)

CHORUS 2008 8910 15 − 240 (27)
NOMAD 2011 15344 6 − 300 (27)

Charm dimuons in ν̄N

CDHS 1982 2123 30 − 250
CHARM II 1999 700 35 − 300

NuTeV 2001 1458 20 − 400
CCFR 2001 1060 30 − 600

CHORUS 2008 430 15 − 240

✦ The NuTeV and CCFR data are used in global QCD fits and provide the
only information about ν̄-induced charm dimuons

✦ The new NOMAD measurement has the largest sample of ν-induced charm dimuons
and can reach energies closer to the charm production threshold
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✦ Global PDF fits with NuTeV and CCFR dimuon data:

κs =

∫

1

0
x[s(x,Q2)+s̄(x,Q2)]dx

∫

1

0
x[ū(x,Q2)+d̄(x,Q2)]dx

= 0.62 ± 0.04 ± 0.03(QCD) (AKP09, PLB 675 (2009) 433 )

S− =
1
∫

0

x [s(x) − s̄(x)] dx = 0.0013 ± 0.0009 ± 0.0002(QCD) (AKP09, PLB 675 (2009) 433 )

S− = 0.0016+0.0011
−0.0009 (MSTW, EPJC 63 (2009) 189 )

S− = 0.0018 ± 0.0016 (CTEQ, JHEP 0704 (2007) 089 )
S− = 0.0005 ± 0.0086 (NNPDF, NPB 823 (2009) 195 )
S− = 0.00196 ± 0.00046+0.00155

−0.00116(syst) (NuTeV, PRL 99 (2007) 192001 )
S− = 0.0018 ± 0.0038 (BPPZ, JHEP 0601 (2006) 006 )
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CHARM DIMUON PRODUCTION FROM NOMAD
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✦ Measure RATIO of cross-sections to reduce systematics:

Rµµ ≡ σµµc
/σcc ≃ Nµµc

/Ncc(x); x = Eν , xBj
,
√

ŝ

✦ Require leading µ− and Q2 ≥ 1 GeV2

∫

σµµc
φ dx dy dEν = 5.15 ± 0.05 × 10−3 νµCC

✦ Total systematic uncertainty (17 different sources) ∼ 2%

✦ Agreement with model calculation based upon global fits with NuTeV+CCFR only
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✦ Add NOMAD σµµ/σCC data to global PDF fit with NuTeV and CCFR dimuon data

(S. Alekhin, S. Kulagin and R.P.; PLB 675 (2009) 433)

✦ Consistency of central values

✦ Reduction of s(x) uncertainty by a factor 2 down to ∼ 3%: κs = 0.61 ± 0.02

✦ Improved determination of the MS mass (S. Alekhin, S. Moch; arXiv:1011.5790 [hep-ph])
mc(mc) = 1.070 ± 0.067 ± 0.050(QCD)
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THE MINERνA EXPERIMENT

✦ New neutrino scattering experiment currently taking data, with plastic scintillator
tracker followed by the MINOS Near Detector as Muon spectrometer

✦ Nuclear targets of CH2 (5 t), Fe (1 t), Pb (1 t), H2O (0.35 t), He (0.25 t) and C
(0.17 t) provide many A-dependent physics measurements

✦ Movable target and horns in NuMI beam line allow runs with Low (LE) and Medium
(ME) energy spectrum:

● Target esposure 4 × 1020 pot (ν + ν̄) with LE, 12 × 1020 pot (ν + ν̄) with ME (from 2012)

● Collected exposure (so far) 1.2 × 1020 pot with LE for each ν and ν̄
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✦ Charged Current events with resolvable muon track and characteristic hadron shower

=⇒ Definition of DIS interactions: Q2 > 1 GeV2 and W > 2 GeV

✦ Beam studies and MIPP hadro-production measurements provide fluxes with a
precision between 5% and 10% (E-dependent)

✦ Measure differential cross-sections and structure functions on different nuclear targets
● Expect a total of 1.76 × 106 CC events and 460k DIS events in LE beam run (sum of all targets)

● Expect one order of magnitude more DIS events in ME beam run

=⇒ See talk by J. Mousseau in parallel session
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THE LBNE PROJECT

✦ The Long-Baseline Neutrino Experiment (LBNE) designed for high sensitivity
measurements of νµ(ν̄µ) → νe(ν̄e) with νe(ν̄) appearance and νµ(ν̄µ) disappearance

=⇒ Next generation after MINOS and NOνA

✦ High intensity ν and ν̄ beams from Fermilab to Homestake mine in SD (L ∼ 1300 km)
● Default configuration with NuMI 700 kW proton beam;

● Potential upgrade with new 8 GeV Linac (Project-X) up to 2.3 MW proton beam;

● Different options for beam spectra considered (default LE).

✦ NEAR DETECTOR complex at ∼ 500 m from target with fine-grained detectors

● Service measurements (fluxes, backgrounds, cross-sections, etc.) for LBL studies

● Precision measurements of neutrino interactions

=⇒ Complementary physics programs

✦ One of the reference ND configurations includes a high resolution tracker in B field
● ∆Eµ < 0.2%, ∆EH < 0.5%;

● Fiducial mass ∼ 7 tons, run 5 year ν + 5 year ν̄;

● Expect about 4.5 × 107 CC events with 700 kW beam (∼ 1.8 × 108 with Project-X)

Roberto Petti USC
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Possible to have additional external target

✦ Possible to install multiple nuclear targets in the fine-grained ND tracker

✦ In-situ determination of fluxes to ∼ 2%

✦ Subtraction of C target from polypropylene (C3H6)n target provides free proton
● Collect O(106) ν CC events and O(106) ν̄ CC events with the 700 kW NuMI beam

● Complete flavor and valence/sea separation (d/u at large x)

● Precision test of Adler sum rule (current algebra)

SA =

∫ 1

0

dx

x

(

F ν̄p
2 − F νp

2

)

= 2

✦ Subtraction of H2O target from D2O target gives interactions on neutron (in D)
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SUMMARY

✦ Power of ν + ν̄ DIS as a probe of nucleon structure still limited by the beam
technology and by the resolution of detectors

=⇒ Some inconsistencies among existing data samples

✦ Recent progress in understanding ν(ν̄) interactions to include ν(ν̄) DIS into global
QCD fits (Axial-Vector current, High Twists, nuclear corrections)

✦ New NOMAD measurement of ν-induced charm dimuon production allows a
substantial reduction of the uncertainties on the strange sea distribution

✦ Many new results from neutrino scattering experiments are expected in the near
future (NOMAD, MINERνA)

=⇒ Stay tuned!

✦ The future LBNE project coupled with high intensity neutrino beams (Project X)
would finally allow to exploit the physics potential of the (ideal) ν(ν̄) probe
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